Boo's Blog

Stay foolish, Stay hungry

本文是基于 极客时间——MySQL 实战 45 讲 整理的学习笔记,仅供学习参考,请勿用于商业用途,如若侵权,请联系并删除。

课程重点:

  1. 了解有索引的情况下,join 的过程
  2. 了解没有索引的情况下,join 的过程
  3. 了解几种 join 算法的区别

为了便于量化分析,我还是创建两个表 t1 和 t2 来和你说明。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
CREATE TABLE `t2` (
`id` int(11) NOT NULL,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `a` (`a`)
) ENGINE=InnoDB;

drop procedure idata;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=1;
while(i<=1000)do
insert into t2 values(i, i, i);
set i=i+1;
end while;
end;;
delimiter ;
call idata();

create table t1 like t2;
insert into t1 (select * from t2 where id<=100)

可以看到,这两个表都有一个主键索引 id 和一个索引 a,字段 b 上无索引。存储过程 idata() 往表 t2 里插入了 1000 行数据,在表 t1 里插入的是 100 行数据。

Index Nested-Loop Join

先来看一下这个语句:

1
select * from t1 straight_join t2 on (t1.a=t2.a);

这里改用 straight_join 让 MySQL 使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去 join。在这个语句里,t1 是驱动表,t2 是被驱动表。

现在,我们来看一下这条语句的 explain 结果。

可以看到,在这条语句里,被驱动表 t2 的字段 a 上有索引,join 过程用上了这个索引,因此这个语句的执行流程是这样的:

  1. 从表 t1 中读入一行数据 R
  2. 从数据行 R 中,取出 a 字段到表 t2 里去查找
  3. 取出表 t2 中满足条件的行,跟 R 组成一行,作为结果集的一部分
  4. 重复执行步骤 1 到 3,直到表 t1 的末尾循环结束

这个过程是先遍历表 t1,然后根据从表 t1 中取出的每行数据中的 a 值,去表 t2 中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称 NLJ。

对应的流程图如下所示:

在这个流程里:

  1. 对驱动表 t1 做了全表扫描,这个过程需要扫描 100 行
  2. 而对于每一行 R,根据 a 字段去表 t2 查找,走的是树搜索过程。由于我们构造的数据都是一一对应的,因此每次的搜索过程都只扫描一行,也是总共扫描 100 行
  3. 所以,整个执行流程,总扫描行数是 200

在知道了这个过程之后,再来回答一下文章开头的两个问题。

先看第一个问题:能不能使用 join?

这里假设不使用 join,那就只能用单表查询。我们看看上面这条语句的需求,用单表查询怎么实现。

  1. 执行select * from t1,查出表 t1 的所有数据,这里有 100 行
  2. 循环遍历这 100 行数据
  3. 从每一行 R 取出字段 a 的值 $R.a
  4. 执行select * from t2 where a=$R.a
  5. 把返回的结果和 R 构成结果集的一行

可以看到,在这个查询过程,也是扫描了 200 行,但是总共执行了 101 条语句,比直接 join 多了 100 次交互。除此之外,客户端还要自己拼接 SQL 语句和结果。

显然,这么做还不如直接 join 来得方便。

那么再来看看第二个问题:怎么选择驱动表

在这个 join 语句执行过程中,驱动表是走全表扫描,而被驱动表是走树搜索。

假设被驱动表的行数是 M。每次在被驱动表查一行数据,要先搜索索引 a,再搜索主键索引。每次搜索一棵树近似复杂度是以 2 为底的 M 的对数,记为 log2M,所以在被驱动表上查一行的时间复杂度是 2*log2M。

假设驱动表的行数是 N,执行过程就要扫描驱动表 N 行,然后对于每一行,到被驱动表上匹配一次。

因此整个执行过程,近似复杂度是 N + N2log2M。

显然,N 对扫描行数的影响更大,因此应该让小表来做驱动表。

到这里小结一下,通过上面的分析我们得到了两个结论:

  1. 使用 join 语句,性能比强行拆成多个单表执行 SQL 语句的性能要好
  2. 如果使用 join 语句的话,需要让小表做驱动表

Simple Nested-Loop Join

现在,我们把 SQL 语句改成这样:

1
select * from t1 straight_join t2 on (t1.a=t2.b);

由于表 t2 的字段 b 上没有索引,因此再用图 2 的执行流程时,每次到 t2 去匹配的时候,就要做一次全表扫描。

你可以先设想一下这个问题,继续使用图 2 的算法,是不是可以得到正确的结果呢?如果只看结果的话,这个算法是正确的,而且这个算法也有一个名字,叫做“Simple Nested-Loop Join”。

但是,这样算来,这个 SQL 请求就要扫描表 t2 多达 100 次,总共扫描 100*1000=10 万行。

这还只是两个小表,如果 t1 和 t2 都是 10 万行的表(当然了,这也还是属于小表的范围),就要扫描 100 亿行,这个算法看上去太“笨重”了。

当然,MySQL 也没有使用这个 Simple Nested-Loop Join 算法,而是使用了另一个叫作“Block Nested-Loop Join”的算法,简称 BNL。

Block Nested-Loop Join

这时候,被驱动表上没有可用的索引,算法的流程是这样的:

把表 t1 的数据读入线程内存 join_buffer 中,由于我们这个语句中写的是 select *,因此是把整个表 t1 放入了内存;

扫描表 t2,把表 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回。

这个过程的流程图如下:


对应地,这条 SQL 语句的 explain 结果如下所示:

可以看到,在这个过程中,对表 t1 和 t2 都做了一次全表扫描,因此总的扫描行数是 1100。由于 join_buffer 是以无序数组的方式组织的,因此对表 t2 中的每一行,都要做 100 次判断,总共需要在内存中做的判断次数是:100*1000=10 万次。

前面我们说过,如果使用 Simple Nested-Loop Join 算法进行查询,扫描行数也是 10 万行。因此,从时间复杂度上来说,这两个算法是一样的。但是,Block Nested-Loop Join 算法的这 10 万次判断是内存操作,速度上会快很多,性能也更好。

接下来,我们来看一下,在这种情况下,应该选择哪个表做驱动表。

假设小表的行数是 N,大表的行数是 M,那么在这个算法里:

  1. 两个表都做一次全表扫描,所以总的扫描行数是 M+N;
  2. 内存中的判断次数是 M*N。

可以看到,调换这两个算式中的 M 和 N 没差别,因此这时候选择大表还是小表做驱动表,执行耗时是一样的。

然后,你可能马上就会问了,这个例子里表 t1 才 100 行,要是表 t1 是一个大表,join_buffer 放不下怎么办呢?

join_buffer 的大小是由参数 join_buffer_size 设定的,默认值是 256k。如果放不下表 t1 的所有数据话,策略很简单,就是分段放。我把 join_buffer_size 改成 1200,再执行上面的语句,执行过程就变成了:

  1. 扫描表 t1,顺序读取数据行放入 join_buffer 中,放完第 88 行 join_buffer 满了,继续第 2 步
  2. 扫描表 t2,把 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回
  3. 清空 join_buffer
  4. 继续扫描表 t1,顺序读取最后的 12 行数据放入 join_buffer 中,继续执行第 2 步

执行流程图也变成了:

图中的步骤 4 和 5,表示清空 join_buffer 再复用。

这个流程才体现出了这个算法名字中“Block”的由来,表示“分块去 join”。

可以看到,这时候由于表 t1 被分成了两次放入 join_buffer 中,导致表 t2 会被扫描两次。虽然分成两次放入 join_buffer,但是判断等值条件的次数还是不变的,依然是 (88+12)*1000=10 万次。

我们再来看下,在这种情况下驱动表的选择问题。

假设,驱动表的数据行数是 N,需要分 K 段才能完成算法流程,被驱动表的数据行数是 M。

注意,这里的 K 不是常数,N 越大 K 就会越大,因此把 K 表示为λ*N,显然λ的取值范围是 (0,1)。

所以,在这个算法的执行过程中:

扫描行数是 N+λNM;
内存判断 N*M 次。
显然,内存判断次数是不受选择哪个表作为驱动表影响的。而考虑到扫描行数,在 M 和 N 大小确定的情况下,N 小一些,整个算式的结果会更小。

所以结论是,应该让小表当驱动表。

当然,你会发现,在 N+λNM 这个式子里,λ才是影响扫描行数的关键因素,这个值越小越好。

刚刚我们说了 N 越大,分段数 K 越大。那么,N 固定的时候,什么参数会影响 K 的大小呢?(也就是λ的大小)答案是 join_buffer_size。join_buffer_size 越大,一次可以放入的行越多,分成的段数也就越少,对被驱动表的全表扫描次数就越少。

这就是为什么,你可能会看到一些建议告诉你,如果你的 join 语句很慢,就把 join_buffer_size 改大。

理解了 Mysql 的两种 join 算法,现在再来试着回答文章开头的两个问题。

第一个问题:能不能使用 join 语句

  1. 如果可以使用 Index Nested-Loop Join 算法,也就是说可以用上被驱动表上的索引,其实是没问题的
  2. 如果使用 Block Nested-Loop Join 算法,扫描行数就会过多。尤其是在大表上的 join 操作,这样可能要扫描被驱动表很多次,会占用大量的系统资源。所以这种 join 尽量不要用

如何判断要不要使用 join 语句时,就是看 explain 结果里面,Extra 字段里面有没有出现“Block Nested Loop”字样。

第二个问题是:如果要使用 join,应该选择大表做驱动表还是选择小表做驱动表?

  1. 如果是 Index Nested-Loop Join 算法,应该选择小表做驱动表;
  2. 如果是 Block Nested-Loop Join 算法:
    • 在 join_buffer_size 足够大的时候,是一样的;
    • 在 join_buffer_size 不够大的时候(这种情况更常见),应该选择小表做驱动表。

所以,这个问题的结论就是,总是应该使用小表做驱动表。

当然了,这里我需要说明下,什么叫作“小表”,并不是说哪张表的数据量小,哪个就是小表。

我们前面的例子是没有加条件的。如果我在语句的 where 条件加上 t2.id<=50 这个限定条件,再来看下这两条语句:

1
2
select * from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=50;
select * from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=50;

注意,为了让两条语句的被驱动表都用不上索引,所以 join 字段都使用了没有索引的字段 b。

但如果是用第二个语句的话,join_buffer 只需要放入 t2 的前 50 行(t1 表需要把每一行取出来,跟 join_buffer 中的数据做对比),显然是更好的。所以这里,“t2 的前 50 行”是那个相对小的表,也就是“小表”。

我们再来看另外一组例子:

1
2
select t1.b,t2.* from  t1  straight_join t2 on (t1.b=t2.b) where t2.id<=100;
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100;

这个例子里,表 t1 和 t2 都是只有 100 行参加 join。但是,这两条语句每次查询放入 join_buffer 中的数据是不一样的:

表 t1 只查字段 b,因此如果把 t1 放到 join_buffer 中,则 join_buffer 中只需要放入 b 的值;
表 t2 需要查所有的字段,因此如果把表 t2 放到 join_buffer 中的话,就需要放入三个字段 id、a 和 b。
这里,我们应该选择表 t1 作为驱动表。也就是说在这个例子里,“只需要一列参与 join 的表 t1”是那个相对小的表。

所以,更准确地说,在决定哪个表做驱动表的时候,应该是两个表按照各自的条件过滤,过滤完成之后,计算参与 join 的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表

总结

  • 如果可以使用被驱动表的索引,join 语句还是有其优势的
  • 不能使用被驱动表的索引,只能使用 Block Nested-Loop Join 算法,这样的语句就尽量不要使用
  • 在使用 join 的时候,应该让小表做驱动表

评论